The invention relates to semiconductor technology and can be used, in particular, in photoelectric converters. The process for increasing the efficiency of photovoltaic cells based on $p^+InP-p^-InP-n^+CdS$ involves the growth of the p^-InP layer on a substrate, made in the form of a p^+InP board with the crystallographic orientation (100), disorientation of $3...5^\circ$ in the direction (110) and the charge carrier concentration of 10^{18} cm⁻³, deposition, on the frontal part of the board, using the method of quasi-closed volume of the n^+CdS layer, deposition of an ohmic contact of Ag+Zn on the reverse side of the board, its thermal treatment at a temperature of 450°C, deposition of an ohmic contact of In onto the n^+CdS layer, its thermal treatment at a temperature of 250°C and deposition by the pulverization method, at a temperature of 300°C, of a ZnO antireflection layer.

Claims: 1